Tableaux and plane partitions of truncated shapes ( extended abstract )

نویسنده

  • Greta Panova
چکیده

We consider a new kind of straight and shifted plane partitions/Young tableaux — ones whose diagrams are no longer of partition shape, but rather Young diagrams with boxes erased from their upper right ends. We find formulas for the number of standard tableaux in certain cases, namely a shifted staircase without the box in its upper right corner, i.e. truncated by a box, a rectangle truncated by a staircase and a rectangle truncated by a square minus a box. The proofs involve finding the generating function of the corresponding plane partitions using interpretations and formulas for sums of restricted Schur functions and their specializations. The number of standard tableaux is then found as a certain limit of this function. Résumé. Nous considérons un nouveau type de partitions planes, ou de tableaux de Young, droits ou décalés, obtenus en privant leurs diagrammes de certaines cellules en haut à droite, et dans certains cas nous trouvons des formules d’énumération pour les tableaux standard. Les preuves impliquent le calcul de la fonction génératrice pour les partitions planes correspondantes, en utilisant des interprétations et des formules pour les sommes de fonctions de Schur restreintes et leurs spécialisations. Le nombre de tableaux standard est alors obtenu comme une certaine limite de cette fonction.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Combinatorial applications of symmetric function theory to certain classes of permutations and truncated tableaux

The purpose of this dissertation is to study certain classes of permutations and plane partitions of truncated shapes. We establish some of their enumerative and combinatorial properties. The proofs develop methods and interpretations within various fields of algebraic combinatorics, most notably the theory of symmetric functions and their combinatorial properties. The first chapter of this the...

متن کامل

The Selberg integral and Young books ( Extended Abstract )

The Selberg integral is an important integral first evaluated by Selberg in 1944. Stanley found a combinatorial interpretation of the Selberg integral in terms of permutations. In this paper, new combinatorial objects “Young books” are introduced and shown to have a connection with the Selberg integral. This connection gives an enumeration formula for Young books. It is shown that special cases...

متن کامل

Hook Formulas for Skew Shapes

The celebrated hook-length formula gives a product formula for the number of standard Young tableaux of a straight shape. In 2014, Naruse announced a more general formula for the number of standard Young tableaux of skew shapes as a positive sum over excited diagrams of products of hook-lengths. We give an algebraic and a combinatorial proof of Naruse’s formula, by using factorial Schur functio...

متن کامل

Generating functions for shifted plane partitions

With the help of a tableaux method, determinant formulas for trace generating functions for various classes of shifted plane partitions are derived. Proceeding from these determinants, generalizations of Gansner's (J. hook formulas for shifted plane partitions and alternative proofs of recent results of Proctor about alternating trace generating functions are given.

متن کامل

Enumeration of Standard Young Tableaux of certain Truncated Shapes

Unexpected product formulas for the number of standard Young tableaux of certain truncated shapes are found and proved. These include shifted staircase shapes minus a square in the NE corner, rectangular shapes minus a square in the NE corner, and some variations.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011